Risk Based Decision Making and ALARP

How low is low enough?

Dr Mark Skelton
Director, Risktec Solutions DMCC
Purpose of Presentation

• An introduction to making risk based decisions and reducing risks As Low As Reasonably Practicable (ALARP).

 ➢ When is individual risk low enough?
 ➢ When is societal risk low enough?
 ➢ What approaches are available to help decide?

• Hopefully it is useful!
Basic Risk Management

IDENTIFY
Are people, environment, assets or reputation exposed to potential harm?
What could go wrong?

What are the causes and consequences?
How likely is it?
How bad will it be?
What is the risk and is it tolerable?

ASSESS

CONTROL
Can the causes be eliminated?
Is there a better way?
How can it be prevented?
How effective are the controls?

RECOVER
Can the potential consequences be limited?
What recovery measures are needed?
Are recovery capabilities suitable and sufficient?
ALARP basic principle

Whilst reduction of risk will always be desirable, the achievement of the reduction may be unwarranted

ALARP may be summarised as:

A measure to reduce risk must be undertaken unless it can be demonstrated (by the duty holder) that the sacrifice involved in implementing the preventative measure(s) is grossly disproportionate to that risk.
Why have quantitative risk criteria?

• **Individual risk**: to ensure individual workers or members of public are not exposed to excessive risks

• **Societal risk**: to limit the risk of multiple fatalities arising in a single event

But what is excessive?

But when is too big too often?
Tolerability of risk framework & individual risk criteria

Unacceptable region

Risk cannot be justified save in extraordinary circumstances

Workers 10^{-3} IRPA
Public 10^{-4} IRPA

Tolerable if risk reduction is impracticable or if its cost is grossly disproportionate to the improvement gained

Workers 10^{-6} IRPA
Public 10^{-6} IRPA

Broadly acceptable region

Tolerable if cost of reduction would exceed the improvement

Necessary to maintain assurance that risk remains at this level

These criteria are generally accepted internationally as applicable for hazardous industries.
First established in UK, 10^{-3} per year was explicitly related to risk borne by high risk groups in mining, quarrying, demolition and deep sea fishing.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Risk</th>
<th>How much activity in 1 year = 1E-3?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hang-gliding</td>
<td>1 in 116,000 flights</td>
<td>116 flights</td>
</tr>
<tr>
<td>Surgical anaesthesia</td>
<td>1 in 185,000 operations</td>
<td>185 operations</td>
</tr>
<tr>
<td>Scuba diving</td>
<td>1 in 200,000 dives</td>
<td>200 dives</td>
</tr>
<tr>
<td>Rock climbing</td>
<td>1 in 320,000 climbs</td>
<td>320 climbs</td>
</tr>
</tbody>
</table>

An IRPA of 10^{-3} is really quite risky
What are typical risk levels in practice?

- 10^{-3} is rather lenient for installations, e.g. very few offshore installations reach this

- Risk levels are rarely ever insignificant, i.e. $<10^{-6}$/y

- Singapore QRA guidelines give IR of 5×10^{-5}/y (on-site) and 5×10^{-6}/y (off-site)
Individual risk - summary

• Maximum tolerable IRPA criteria of 10^{-3} for workers & 10^{-4} for public are in common international use

• But are rather lenient for most facilities - new designs often set more stringent criteria – 10 or more times lower
Societal risk

A and B have equal individuals risk levels (IR and IR’) but B has larger societal risk (SR) because more people exposed.

\[
\begin{align*}
IR_A &= IR_B \\
SR_A &= SR_B
\end{align*}
\]

If IR levels are acceptable, when is SR not acceptable?
Why have societal risk criteria?

• Use to limit risk of major accidents (rare high-consequence events)
• Help target risk reduction measures, e.g.
 ▪ Restrictions on concurrent activities
 ▪ Restrictions on land use
 ▪ Enhanced engineered safeguards
 ▪ Improved building siting
 ▪ Improved building protection
Societal risk framework

Most common form is FN-diagram

- **Example FN-curve:** exceeds criteria here
- **Intolerable**
- **Broadly acceptable**
- **Further assessment & risk reduction**

But where are these lines?
Unlike IR, variation in regulatory SR criteria is very wide

Variation of over 100 in upper tolerability lines

Steep slope builds in multiple fatality aversion
Societal risk - summary

• A single multiple fatality accident at industrial facility can seriously threaten future of operator

• In absence of regulatory criteria, choice of criteria largely comes down to company’s values

• FN-curves not without drawbacks but helpful when used in context

• Criteria must be workable in practice:
 ▪ Too severe or loose = limited usefulness
 ▪ Based on current good industry practice
But if risk is in ALARP zone then risk is ALARP, right?

• Wrong! Have only taken first step
• Need to consider introducing further risk reduction measures to drive remaining, or “residual”, risk downwards to ALARP level
• ALARP level is reached when time, trouble and cost of further reduction measures become unreasonably disproportionate to additional risk reduction obtained
Balancing cost and risk reduction

ICAF = Cost of option - Reduction in loss of assets & production
Statistical fatalities averted (ΔPLL)
Cost of averting a fatality - illustrative

<table>
<thead>
<tr>
<th>ICAF (USD)</th>
<th>Guideline</th>
</tr>
</thead>
</table>
| 1,000 | Highly effective
| | *Always implement* |
| 10,000 | Effective
| | *Always implement* |
| 100,000 | Effective
| | *Implement unless risk is negligible* |
| 1,000,000 | Consider
| | *Effective if individual risk levels are high* |
| 10,000,000 | Consider
| | *At high risk levels or other benefits* |
| 100,000,000 | Ineffective
| | *Cost grossly disproportionate* |
| 1,000,000,000 | |
But demonstrating ALARP is not a numbers game – it is a process

1. Identify & assess hazards
2. Confirm minimum acceptance criteria are met
3. Identify complete range of possible risk reduction measures
4. Implement each measure unless proven to be not reasonably practicable

Risks are only ALARP once every measure has either been implemented or proven to be not reasonably practicable
ALARP tools - the more complex or risky the project, the more sophisticated the tools required

- **Codes & standards**
 - Nothing new or unusual
 - Well understood risks
 - Established practice

- **Good practice & engineering judgement**
 - Some risk trade-offs
 - Some uncertainty
 - Some deviation from standards

- **Risk assessment & cost-benefit analysis**
 - Very novel or challenging
 - Strong stakeholder views
 - Large uncertainties

- **Peer review & benchmarking**

- **Stakeholder consultation**

Increasing complexity and risks
Qualitative ALARP assessment

An ALARP assessment should start with a qualitative approach before even considering ICAFs.
Qualitative example, bow-tie diagrams

Assessment of ALARP branch-by-branch
“What else can we do?”
“Can we improve control effectiveness?”
“Can we add more controls?”
“Is it practical to do so?”

But be wary of barrier counting!
For each branch of the bowtie diagram, confirm that the risk is ALARP

- How effective are the existing controls?
- Do they fully meet industry best practice?
- What extra measures would reduce the risk?
- Are they practical?
- Be wary of assessing ALARP by barrier counting!
ALARP assessment - summary

• Definition implies a mathematical formula
• QRA & CBA very powerful when comparing options during design or modifications during operations
• Experienced based, qualitative approaches often identify vast majority of cost-effective improvements
• In practice, amounts to taking balanced view and reaching defensible consensus
• Convincing ALARP demonstration:
 ▪ document assessment of improvement options – implemented and discounted
 ▪ level of assessment appropriate to facility life-cycle and magnitude of risk
Summary

- Individual risk criteria are generally accepted internationally; societal risk criteria show large variation
- Most facilities lie in ALARP zone and require qualitative and sometimes quantitative demonstration of risk reduction
- A single multiple-fatality accident at an industrial facility can seriously threaten future of operator
- QRA is inexact - quantitative criteria should be seen as guidelines
- In practice, amounts to taking balanced view and reaching defensible consensus amongst stakeholders
Thank you for your attention

Mark Skelton
mark.skelton@risktec.tuv.com
Scan to submit your feedback for today’s session
Go to: www.pigeonhole.at

Enter Passcode: SCS2019